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Abstract. The one-loop polarization operator of neutral gluons in the background constant Abelian iso-
topic, H3, and hypercharge, H8, chromomagnetic fields combined with A0 electrostatic potential at high
temperature is calculated. The case when A0 = 0 is investigated separately. The proper time method is
applied. It is found that neutral gluons do not acquire magnetic masses in the background fields, in contrast
to the charged ones. The application of the results are discussed.

1 Introduction

Investigation of the deconfinement phase of QCD remains
of considerable interest for high-energy physics and cos-
mology. Among the most important objects here is a gluon
polarization tensor (PT) containing information on the ex-
citation spectrum of quark–gluon plasma. First the QCD
PTwas calculated and investigated in one-loop order of per-
turbation theory at T �= 0 by Kalashnikov and Klimov [1,2]
(see also the surveys in [3–5] where the results on higher-
order contributions are discussed). As it has been shown,
the space components of the one-loop gluon propagator cal-
culated within a standard perturbation theory possesses a
fictitious infrared pole at k4 = 0, k̄ ∼ g2T which could not
be removed by any further resummations. These infrared
divergencies of the thermal Green functions provide the
most challenging difficulties in understanding the internal
structure of perturbative finite temperature QCD. It is be-
lieved, however, that formation of some condensate fields,
such as a uniform “color” magnetic field (Hc = const.) or
electrostatic potential (the so-called A0 condensate), can
improve the infrared properties of the theory. These con-
densate fields may arise in the deconfinement phase of QCD
due to the peculiar dynamics of non-Abelian gauge fields,
as it was argued by several authors [6–14]. In the paper
by Kalashnikov [15] it was demonstrated, in particular,
that the A0 condensate shifts the fictitious pole and intro-
duces the gluon magnetic mass of the order m2 ∼ g4T 2.
At the same time, in [16] it was discovered that in the
presence of the external Abelian chromomagnetic fields H
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the transversal charged gluons acquire a magnetic mass
m2

magn. ∼ g2 √
gH T which is generated within the one-

loop polarization operator. It acts to stabilize the external
field. In [12] it was found within the SU(3) gluodynam-
ics that at high temperature a specific combination of the
Abelian hypercharge, H8, and isotopic spin, H3, fields is
generated and is stable due to this magnetic mass. It is
also of the order ∼ g4T 2. The tachyonic (unstable) modes
of the transversal charged gluons, which appear in the en-
ergy spectrum of the charged vector particles when the
homogeneous magnetic field is applied to the system, are
removed by these high-temperature radiative corrections.
Moreover, an imaginary part of the effective potential (EP)
of the background fields is cancelled if the contribution of
the daisy diagrams with this magnetic mass is taken into
consideration. Hence, one has to believe that the non-trivial
configuration of the classical magnetic fields H3 and H8 is
generated in the deconfinement phase.

It is interesting to see in actual calculations whether or
not the magnetic mass of the neutral gluons is generated
in the external field at high temperature. Actually, this
is not expected because on general theoretical grounds
the fields belonging to the Abelian projection of the non-
Abelian groups remain massless. It is also important to
know whether or not the fictitious pole of the neutral gluons
is preserved when a magnetic field and A0 is present in
the system.

The aim of the present paper is to calculate the one-
loop polarization operator of the neutral gluons in SU(3)
gluodynamics in the external fields H3 and H8 and A0 (or
A4) electrostatic potential at high temperature and check
whether the full propagator of neutral gluons Q3 and Q8
contains the fictitious pole leading to the infrared instabil-
ity. If this is not the case, one is able to conclude that the
formation of the condensate fields plays the role of an in-
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frared regulator and the transversal components of neutral
gluons are unscreened. It is necessary to note that at zero
temperature this problem was investigated in [20]. We will
begin with the case when both the chromomagnetic fields
and the electrostatic potentials are present in the system.
Then the case of gA0 = 0 will be separately analysed.
We will restrict our consideration to the one-loop approx-
imation. To evaluate integrals over a three-dimension mo-
mentum the Fock–Schwinger proper time method will be
applied. The most essential steps of calculation are given
in Appendix A.

2 Calculation of the polarization tensor

We start our analysis with the expression of the Lagrangian
of neutral gluons in (Euclidean) SU(3) gluodynamics:

Lneut.gl.

= − 1
4
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Here the following basis of charged gluons Qa
µ (a = 1, 2,

4, 5, 6, 7),

W±
1µ =

1√
2

(
Q1

µ ± iQ2
µ

)
, W±

2µ =
1√
2

(
Q4

µ ± iQ5
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)
,
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)
, (2)

is introduced. The external potential is chosen in the form
Ba

µ = δa3B3µ+δa8B8µ, whereB3µ = H3δµ2x1+δµ4gA3 and
B8µ = H8δµ2x1+δµ4gA8. In these formulae the notationA3
and A8 corresponds accordingly to Aa=3

0 and Aa=8
0 electro-

static potentials. The constant chromomagnetic fields are

a) b)

c) d)

W
±

Q

W
±

Q

C
±

Q

C
±

Q

Fig. 1. Polarization operator of neutral gluons in the one-loop
approximation

chosen to be directed along the third axis of the Euclidean
space and a = 3 and a = 8 of the color SUc(3)-space:
F a ext

µν = δa3F a=3
µν + δa8F a=8

µν , F a
12 = −F a

21 = Ha, a = 3, 8.
From the Lagrangian (1) one can easily derive the dia-
grams describing propagation of the neutral gluons in the
background fields.

In the one-loop approximation thePTof neural gluons is
determined by the standard set of diagrams in Fig. 1, where
double wavy lines represent the Green function Gr µν(x, y)
for the charged gluons, dashed double lines represent the
Green function D(x, y) for the charged ghost fields. A thin
wavy line corresponds to the neutral gluon fields Q3,8

µ . In
the operator form the above Green functions are given by
the expressions (in Feynman’s gauge)

Gr=1 µν(P ) = − [
P 2 + 2igF3µν

]−1
,

Gr=2,3 µν(P ) = −
[
P 2 +

√
6iλ±gF8µν

]−1
,

D(P ) = − 1
P 2 ,

λ± = 1 ± 1√
6

H3

H8
.

To calculate the PT we make use of the proper time repre-
sentation and the Schwinger operator formalism [17]. The
PT of the neutral gluons in the background fields at T �= 0
can be written as

Πa=3
µν (3)

= −g2T
∑
P4

∫
d3P

(2π)3

(
Πµν(k, P ) +

1
4
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)

,

Πa=8
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2
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∫
d3P

(2π)3
Π̃µν(k, P ), (4)

where

Πµν(k, P ) = Πr=1
µν (k, P ),

Π̃µν(k, P ) =
∑

r=2,3

Πr
µν(k, P ),

Πr
µν(k, P )

= {Γr µα,β(P, k) Gr βλ(P ) Γr νσ,λ(P, k) Gr σα(P − k)
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−2δµνGr αα(P )

−2 [(2P − k)µD(P )(2P − k)νD(P − k)

−2δµνD(P )]} ,

Γµα,β = (2P − k)µδαβ − 2(kαδβµ − kβδαµ),

P4 = 2πlT + gA3, Pi = i∂i + gB3i for r = 1 and P4 =

2πlT +
√

3
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6
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.

Assume now that the values of potentials A3 and A8 satisfy
the following conditions: gA3 � T and gA8 � T. This is
natural because the quantities gA3,8 are expected to be of
order g2T , as it is pointed out in [10, 11] for SU(2) case.
To investigate the high-temperature limit of (3) and (4)
one can take the l = 0 term only in the sum over P4 [3].

To evaluate the expression for the PT let us apply the
Schwinger proper time method modified for the case of high
temperature. From a technical point of view, this case is
similar to the zero temperature one, so one may consult for
more details, for example, [18–22], where the polarization
operator of photon as well as neutral gluon in the external
(chromo)magnetic field were calculated at T = 0 . The
basic steps of the calculating procedure are noted in the
appendix. For simplicity it is convenient to introduce the
following notation:
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2
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. (5)

Then the final result of evaluation (3) and (4) reads
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Exact expressions for the functions f (i) and l
(i)
± are

adduced in the Appendix B. The matrix Bij is the usual
two-dimension antisymmetric tensor,

Bij = εij = δi2δ1j − δi1δ2j .

The spatial part of the PT is transversal manifestly, as
it is required by gauge invariance. Note that Π(i=3,4) = 0
for A3 = A± = 0.

Now let us consider the high-temperature expansion,
gH3,8 � T 2, (gA3,8)2 � T 2, of the expressions in (8)–
(12). Assuming that the quantities gH3,8 and (gA3,8)2 are
of the same order of magnitude, we investigate the two
separate regimes: | k̄ |� g2T and | k̄ |≥ gT . In the former
case, with the additional condition k2

⊥ � gH3,8 and k2
3 <

gH3,8, themain contributions to the integrals come fromthe
integration domain where x � 1. Carrying out integrations
we obtain
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Here ν = k2
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and the functions Π(i)(α; β; γ)
are represented by the following expressions:
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where according to (13)–(16) instead of the variables α, β
and γ one has to substitute gH3, ν, m or gHh±, ν±, m±,
respectively. For Ψa=3 and Ψa=8 we have
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For the values m = 1 and/or m± = 1 the functions Π(i=1,2)

and Π(4) become divergent whereas Π(3) is equal to zero.
In the case of | k̄ |≥ gT and k2

⊥ � (gA3,8)2 (but m > 1
and m± > 1), the main contributions to the integrals come
from the region x ∼ 0. Expanding the integrand functions
into the power series over the variable x, one can obtain
for the spatial components (6)
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It is remarkable that the quantities (20), which are, of
course, only the leading terms of perturbative expansion, do
not depend upon the condensate fields. For the momentum
scale k⊥ ∼ T the constant C is of order g2 and, therefore,
perturbative theory is actually governed by the parameter
g2. However, for the scale k⊥ ∼ gT � T the effective
expansion parameter becomes g. Hence one can see that
perturbative features of the model are aggravated with
decreasing k⊥.

3 Polarization tensor
in the external magnetic fields

In this section we consider the PT in the external chro-
momagnetic fields H3,8 (but gA3,8 = 0). We merely put
the parameters A3, A±, in the (9)–(12) equal to zero. In
this case the integrands in the RHS of (9)–(12) are non-
analytical for large x. To ensure the convergence of integrals
with respect to x one has to rotate the integration contour
by the standard rule: x → ix. Then, assuming again that
k2

⊥ � gH3,8 and k2
3 � gH3,8, the main contributions come

from large x and we obtain
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The Debye masses of neutral gluons are

Re
(
Πa=3

44
)

=
g2

π
T

[√
gH3 +

√
gH8

1
4

(√
λ+ +

√
λ−

)]
(23)

and

Re(Πa=8
44 ) =

3g2

2π
T
√

gH8

(√
λ+ +

√
λ−

)
. (24)



V.V. Skalozub, A.V. Strelchenko: The polarization tensor of neutral gluons in external fields at high temperature 125

The quantities (21) and (22), as well as Π44, include imag-
inary parts reflecting the existence of the tachyonic mode
in the tree-level spectrum of charged gluons. It should be
noted that the expressions for Π44 represent the next-to-
leading terms. To calculate the leading terms one has to
perform a summation over the discrete frequencies P4.

4 Discussion

To discuss the results obtained, let us consider the full
propagator of the neutral gluons Qa=3,8

µ . To one-loop order
the transversal part of the propagator spatial components
has the following structure:

Gtr
ij =

(
δij − kikj

k̄2

)
1

k̄2(1 + Π(1))
(25)

−
(
Bk̄

)
i

(
Bk̄

)
j

k̄2

Π(2)[
k̄2

(
1 + Π(1)

)
+ k2

⊥Π(2)
] (

1 + Π(1)
) ,

where the functions Π(1,2) are given by (13), (14), (20), (21)
and (22). In the case of gA3,8 �= 0 (see (13), (14) and (20)),
the full propagator does not contain a non-trivial pole.
Hence, one has to conclude that the neutral gluons do not
acquire magnetic masses in the presence of the background
fields A3,8 and H3,8.

Here a more serious problem arises. Namely, if the con-
densate fields are of the order g2T , as it was argued in [6–11],
then, for the case of k2

⊥ � √
gH3,8 (see (13)–(16)), the fac-

tors g2T√
gH3,8

appearing in (13)–(16) turn out to be of order

O(1) and the perturbative expansion breaks down for the
momentum scale k⊥ � g2T . Therefore one cannot explore
the infrared region (k̄ → 0) by the usual perturbative meth-
ods and our conclusion is valid for the scale k⊥ ≥ gT , only.
In this region perturbation theory is reliable (see (19)–(20)
and the text below).

In the case of the chromomagnetic fields having been
taken into consideration the quantities Π(1,2) were found
to be complex, and (25) can be rewritten as

Gtr
ij =

(
δij − kikj

k̄2

)
1 + Re Π(1) − i Im Π(1)

k̄2
[(

1 + Re Π(1)
)2 +

(
Im Π(1)

)2]
− (

Bk̄
)
i

(
Bk̄

)
j

(
1 + Re Π(1) − i Im Π(1)

)
Π(2)

k̄2
[(

1 + Re Π(1)
)2 +

(
Im Π(1)

)2]
×
((

k̄2
(
1 + Re Π(1)

)
+ k2

⊥ Re Π(2)

−i
(
k̄2 Im Π(1) + k2

⊥ Im Π(2)
)))

/([(
k̄2

(
1 + Re Π(1)

)
+ k2

⊥Π(2)
)2

+
(
k̄2 Im Π(1) + k2

⊥ Im Π(2)
)2
])

. (26)

This expression has also a pole at k̄2 = 0, only. However,
the imaginary part that arises in (26) has a “tachyonic”
origin, as was mentioned above. Really, the calculation of
Πij (as well as Π44) has been carried out with the bare
propagators of the charged gluons substituted into inter-
nal lines of diagrams. This results in non-analyticity of
integrands with respect to the variable x in the Πµν . In
this sense the carried out one-loop calculation of the PT
appears to be insufficient: to obtain a correct expressions
for (26) independent of the imaginary part, the charged
gluon propagators accounting for the magnetic mass de-
rived in the paper [12] must be used. But now, when we
know the origin of the imaginary part, it does not matter
when the problem on the magnetic mass of the neutral
gluons is investigated.

The Abelian constant chromomagnetic field is a solu-
tion to the classical field equations without sources. Hence,
in particular, it follows that it could arise in nature due to
a vacuum magnetization. This phenomenon at finite tem-
perature was investigated in [10,23], in [6,7] for SU(2) and
in [12] for SU(3) gluodynamics, and it has been shown that
the created field is stable at sufficiently high temperatures.
The field strength is temperature dependent and has the
order gH ∼ g4T 2. So, Abelian magnetic fields could exist in
the deconfinement phase of QCD and in the early universe.
Onemay expect byanalogy to ferromagnetics that adomain
structure may form in order to provide gauge invariance of
the vacuum state. This point needs additional investiga-
tion. A number of remarks on the Abelian magnetic fields
at finite temperature are discussed in [12]. Here we would
like to add other ones concerning lattice field theory. In
the lattice description of non-Abelian gauge fields the no-
tions Abelian dominance, Abelian projection and maximal
Abelian gauge (see, for instance, [24]) are widely used. In
these cases, however, one never refers to any solutions of
the field equations in continuum. As a rule, one investi-
gates the non-Abelian fields in terms of the more familiar
Abelian ones. The Abelian-like behaviour is responsible
for such important properties of the vacuum as dual con-
finement of quarks, the monopole–antimonopole vacuum
structure, etc. So, Abelian fields are a good approximation
in this approach also although further investigation of their
properties at finite temperature is of interest.

In the present paper it was straightforwardly demon-
strated that the transversal neutral gluon fields are not
screened by thermal fluctuations if non-trivial condensates
are present in the QCD deconfinement phase. We arrived
at the following picture when the assumed formation of
condensate fields gA3,8 and gH3,8 determines the effective
masses of the charged gluons while the neutral spatial com-
ponents do not acquire magnetic masses in the fields. It is
reasonable to suppose that this picture will be also valid
when only chromomagnetic fields gH3,8 are generated in
the system although higher-order contributions to the neu-
tral gluon PT must be taken into account in this case. It
is worth to emphasize that in the infrared region, k → 0,
the full propagator (25) does not contain the “fictitious”
pole. This is in contrast to the case of trivial vacuum [1,3].



126 V.V. Skalozub, A.V. Strelchenko: The polarization tensor of neutral gluons in external fields at high temperature

Acknowledgements. One of us (A.S.) thanks M. Bordag for
helpful discussions and the graduate college Quantenfieldthe-
orie at the University of Leipzig for support and a friendly
environment. This work (V.S.) was supported in part by the
grant from DFG No: UKR 427/17/03.

Appendix A

To illustrate the basic stages of evaluating the PT (3)–(4)
let us consider the integral

Iij =
g2

β

∫
d3P

(2π)3
Πij

(
k̄, P̄

)
,

which represents the contribution of the charged fields
W±

r=1 (and the corresponding ghosts) to the Πa=3
ij at high

temperature. The rest of the components of the tensor Iµν

are calculated analogously. Following the standard pro-
cedure we introduce a proper time for each propogator
appearing in Πij(k̄, P̄ ):

D
(
P̄
)

= −
∫ ∞

0
dse−sP̄ 2

,

Gr=1 µν

(
P̄
)

= −
∫ ∞

0
dse−sP̄ 2−2igF3µνs.

Then, the whole expression for I can be rewritten in
the form

Iij =
g2

β

∫ ∞

0
ds1ds2

∫
d3P

(2π)3
exp

[−(s1 + s2)(gA3)2
]

×
{[

Γ1 il,m

(
P̄ , k̄

)
Λmn(σ1) Γ1 js,n

(
P̄ ′, k̄

)
Λsl(σ′

1)

−2
(
2P̄ − k̄

)
i

(
2P̄ ′ − k̄

)
j

]
θr=1

}
−2

g2

β
δij

∫ ∞

0
ds

∫
d3P

(2π)3
[TrΛ(σ′′

1 ) − 2] e−s(P̄ 2+(gA3)2),

where Γ1 il,m = (2P − k)iδlm − 2(klδmi − kmδli) is the
vertex factor,

θr=1 = e−s1P̄ 2
e−s2(P̄−k̄)2

,

Λij(x) = Rij − B2
ijch(x) − iBijsh(x)

and the variables σ1, σ′
1, σ′′

1 are

σr=1 = 2igH3s1, σ′
r=1 = 2igH3s2, σ′′

r=1 = 2igH3s.

We introduced the following designation: P ′
i =

(exp[−2igF3s1]P )i, Pi = i∂i + gB3i. The matrixes Rij ,
Bij and B2

ij are

Rij = δi3δ3j , Bij = δi2δ1j − δi1δ2j , B2
ij = BilBlj .

Next, three-dimensional integration with respect to P̄
in Iij is carried out by means of the transition to the
conjugate variable X ′

i:

[Xi, Pj ] = iδij .

By using the eigenstates of the operator Xi as determined
by the condition X ′

i = 0, the integral over P̄ can be repre-
sented as∫

d3P

(2π)3
f
(
P̄
)

=
〈
X̄ ′ = 0

∣∣f (P̄ )∣∣ X̄ ′ = 0
〉
.

Hence, performing the following transformation of the
variables s1 and s2: s1 = s(1−u), s2 = su, we have for Iij

Iij =
g2

β

1∫
0

du

∞∫
0

dss exp
[−s(gA3)2

]
×
〈[

Γ1 il,m

(
P̄ , k̄

)
Λmn(σ1) Γ1 js,n

(
P̄ ′, k̄

)
Λsl (σ′

1)

−2
(
2P̄ − k̄

)
i

(
2P̄ ′ − k̄

)
j

]
θr=1

〉
−2

g2

β
δij

∫ ∞

0
ds [TrΛ (σ′′

1 ) − 2] exp
[−s(gA3)2

] 〈
e−sP̄ 2

〉
.

For convenience we use the notation 〈X̄ ′ = 0 | . . . | X̄ ′ =
0〉 = 〈. . .〉. Now one needs to calculate the quantities 〈θr=1〉,
〈Piθr=1〉 and 〈PiPjθr=1〉 according to the procedure de-
scribed in [17]. The result reads

〈Piθr=1〉 =
(

A

D
k̄

)
i

〈θr=1〉,

〈PiPjθr=1〉 =

[(
A

D
k̄

)
i

(
A

D
k̄

)
j

− ig
(

F

DT

)
ij

]
〈θr=1〉,

〈θr=1〉 =
1

(4πs)3/2

gH3s

sh(gH3s)
e−Φ3 ,

Φ3 = k2
3su(1 − u) + k2

⊥
ζ

2gH3
,

where A = e−2iguFsu − 1, D = e−2iguFs − 1, k2
⊥ = k2

1 +
k2
2 and

ζ =
ch(gH3s) − ch(gH3(1 − 2u)s)

sh(gH3s)
.

Note that

〈e−sP̄ 2〉 =
1

(4πs)3/2

gH3s

sh(gH3s)
.

Finally, after integrating by parts, we arrive at

Iij =
g2

8π3/2

T√
gH3

×
1∫

0

du

∞∫
0

dx

sh(x)
√

x exp[−Φ − xm]Mij(x, u).

Here the designations (5) are used and x = gH3s. The
matrix Mij is defined by

Mij =
{

2ch(2x)
[(

ρk̄
)
i

(
ρk̄
)
j
− ρij

(
k̄ρk̄

)
+
(
λk̄
)
i

(
λk̄
)
j

]
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+ 8
(
Bk̄

)
i

(
Bk̄

)
j
ζsh(2x)

+ 4
[
− (

Λ (σ′) k̄
)
i

(
Λ(σ)k̄

)
i
− (

Λ(−σ)k̄
)
i

(
Λ(−σ′)k̄

)
i

+ Λij (σ′) (k̄Λ(σ)k̄) + Λij(−σ)
(
k̄Λ(σ′)k̄

)]}
,

where σ = 2x(1 − u), σ′ = 2xu, ρ = (1 − 2u)R − ξB2,
λ = ζB, ξ = sh(x(1−2u))

sh(x) . It can be easily verified that the
quantity Iij is manifestly transversal, kiIij = kjIij = 0, as
it should be due to gauge invariance.

Now we can apply described above procedure to eval-
uate the Πa=3,8

ij . The result is given by

Πa=3
ij = Iij +

1
6

Πa=8
ij ,

Π
(i)
a=8 =

3g2T

16π3/2

1∫
0

du

∞∫
0

dx

sh(x)
√

x

×
{

1√
gH+

e−Φ+−xm+ +
1√
gH−

e−Φ−−xm−

}
Mij(x, u).

It is convenient to rewrite the operators Πa=3,8
ij , using their

eigenvectors, bρ
i , and eigenvalues, κρ

a=3,8, as

Πa=3,8
ij =

3∑
ρ=1

κρ
a=3,8

bρ
i b

ρ
j

|bρ|2 ,

Πa=3,8
ij bρ

j = κρ
3,8b

ρ
i ,

where bρ=1
i = (Bk̄)i, bρ=2

i = (Rk̄)i +
k2
3

k2
⊥

(B2k̄)i and bρ=3
i =

ki. The eigenvectors bρ
i satisfy the condition of complete-

ness:

3∑
ρ=1

bρ
i b

ρ
j

|bρ|2 = δij .

Hence, since κρ=3 = 0 because of transversality of the
Πa=3,8

ij , we obtain (6).

Appendix B

The functions f (i)(x, u) and l
(i)
± (x, u) are

f (1)

= 4
[
2ch(x)ch(x[1 − 2u]) − 1

2
(1 − 2u)ξch(2x)

]
,

f (2) = 4
[
ch(2x) − 2sh(2x)ζ − 1

2
ch(2x)(ξ2 − ζ2)

]
−f (1),

f (3) = 4gA3 [2sh(2x) − ch(2x)ζ] ,

f (4) = 8(gA3)2ch(2x),

l
(i=1,2)
± = f (i=1,2), l

(3)
± =

A±
A3

f (3), l
(4)
± =

(A±)2

(A3)2
f (4)

and

ξ =
sh(x(1 − 2u))

sh(x)
, ζ =

ch(x) − ch(x(1 − 2u))
sh(x)

.
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